1. Write a short note about the vibrational spectrum of crystals.

 SolutionLet us examine the propagation of an elastic wave in a long bar. The wave equation in one dimension is

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}}-\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \varphi}{\partial \mathrm{t}^{2}}=0 \tag{1}
\end{equation*}
$$

The solution of this equation is

$$
\begin{equation*}
\varphi=A e^{i(k x-v t)} \tag{2}
\end{equation*}
$$

Substituting Eq. (2) in (1) leads to

$$
\begin{equation*}
v=\mathrm{ck} \tag{3}
\end{equation*}
$$

The last equation is known as the dispersion relation which represents a straight line as in the figure

The boundary conditions require that

$$
\begin{equation*}
\varphi(0)=\varphi(\mathrm{L}) \tag{4}
\end{equation*}
$$

Substituting by Eq. (2) in (4) gives

$$
\begin{equation*}
\mathrm{k}=\mathrm{n} \frac{2 \pi}{\mathrm{~L}}, \quad \mathrm{n}=0, \pm 1, \pm 2, \ldots \tag{5}
\end{equation*}
$$

The density of states is

$$
\begin{equation*}
\mathrm{g}(v) \mathrm{d} v=\frac{\mathrm{L}}{2 \pi} \mathrm{dk} \tag{6}
\end{equation*}
$$

In one dimension

$$
\mathrm{g}(v)=\frac{\mathrm{L}}{2 \pi} \frac{1}{\mathrm{c}}
$$

In three dimension

$$
\begin{equation*}
g(v)=\frac{3 V}{2 \pi^{2}} \frac{v^{2}}{c^{3}} \tag{7}
\end{equation*}
$$

2. Discus the classical theory interpretation for Duliong-Petit law of

 specific heat.
Solution

The specific heat depends on the temperature as in the figure. At high temperature the value of C_{v} is close to 3 R

In classical theory the average energy is

$$
\begin{equation*}
\bar{\varepsilon}=\mathrm{KT} \tag{1}
\end{equation*}
$$

And the energy per mole is

$$
\begin{equation*}
\mathrm{U}=3 \mathrm{~N}_{\mathrm{A}} \mathrm{KT}=3 \mathrm{RT} \tag{2}
\end{equation*}
$$

So the specific heat at constant volume is

$$
\begin{equation*}
C_{V}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}=3 \mathrm{R} \tag{3}
\end{equation*}
$$

This is in agreement with experiment at high temperature, but it fails completely at low temperatures.

3. Prove the following relation for the occupation number n_{i} due

to Bose - Einstein distribution $n_{i}=\frac{g_{i}}{e^{\alpha+\beta \varepsilon_{i}}-1}$

Solution

Let the number of allowed states associated with the energy ε_{i} be g_{i}. Let us first calculate the number of ways of putting n_{1} particles of N particles in one box, then n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ in second, and so on until we have exhausted all of the particles. The number of ways of choosing n_{1} particles out of N particles is given by

$$
\begin{equation*}
\mathrm{W}_{1}=\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \tag{1}
\end{equation*}
$$

and the number of choosing n_{2} out of $\mathrm{N}-\mathrm{n}_{1}$ is:

$$
\begin{equation*}
\mathrm{W}_{2}=\frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \tag{2}
\end{equation*}
$$

and the number of ways of achieving this arrangement is

$$
\begin{align*}
\mathrm{W} & =\mathrm{W}_{1} \cdot \mathrm{~W}_{2} \cdots \\
& =\frac{\mathrm{N}!}{\left(\mathrm{N}-\mathrm{n}_{1}\right)!\mathrm{n}_{1}!} \cdot \frac{\left(\mathrm{N}-\mathrm{n}_{1}\right)!}{\left(\mathrm{N}-\mathrm{n}_{1}-\mathrm{n}_{2}\right)!\mathrm{n}_{2}!} \cdots \\
& =\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\cdots} \mathrm{n}_{\mathrm{i}}! \\
\mathrm{W} & =\mathrm{N}!\prod_{\mathrm{i}} \frac{\mathrm{~g}_{\mathrm{i}}^{\mathrm{n}_{\mathrm{i}}}}{\mathrm{n}_{\mathrm{i}}} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
\ln \mathrm{W} & =\ln \mathrm{N}!+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}!\right) \\
& =\mathrm{N} \ln \mathrm{~N}+\sum_{\mathrm{i}}\left(\mathrm{n} \ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}\right)
\end{aligned}
$$

To obtain the most probable distribution, we maximize Eq. (3) with $\mathrm{dN}=0$:

$$
\begin{aligned}
& \delta \ln \mathrm{W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \\
& \quad \delta \ln \mathrm{~W}=\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}-1\right) \delta \mathrm{n}_{\mathrm{i}}=0
\end{aligned}
$$

but

$$
\begin{align*}
& \delta \mathrm{N}=\sum_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{4}\\
& \delta \mathrm{U}=\sum_{\mathrm{i}} \varepsilon_{\mathrm{i}} \delta \mathrm{n}_{\mathrm{i}}=0 \tag{5}
\end{align*}
$$

multiply Eq. (4) by $\alpha+1$ and Eq. (5) bt -B and add the resulting equations to each other:

$$
\begin{equation*}
\sum_{\mathrm{i}}\left(\ln \mathrm{~g}_{\mathrm{i}}-\mathrm{n} \ln \mathrm{n}_{\mathrm{i}}+\alpha-\beta \varepsilon_{\mathrm{i}}\right) \delta \mathrm{n}_{\mathrm{i}}=0 \tag{6}
\end{equation*}
$$

Since n_{i} is vary independent,

$$
\ln g_{i}-n \ln n_{i}+\alpha-\beta \varepsilon_{i}=0
$$

or

$$
\begin{equation*}
\ln \frac{\mathrm{g}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i}}}+\alpha-\beta \varepsilon_{\mathrm{i}}=0 \tag{7}
\end{equation*}
$$

Solving Eq. (7) for n_{i} gives
$n_{i}=\frac{N}{Z} g_{i} e^{-\beta \varepsilon_{\mathrm{i}}}$

